Transitioning from relational to document-oriented databases involves understanding how data can be embedded or referenced.
// Relational User Table: user_id, name Order Table: order_id, user_id, product // Document Model { user_id: 1, name: "Alex", orders: [{ order_id: 1001, product: "Book" }] }
Analyze your domain to clearly identify unique entities like users, orders, products, and quantify them in terms of document size and frequency.
Determine which data is frequently read or written to decide how to structure your documents efficiently.
Measure your application's performance and frequency of operations to make informed modeling decisions.
Understand clearly if relationships are 1:1, 1:N, or N:N.
Embed data for fast reads; reference data if independence or size is a concern.
// Embedded (preferred) { user: "Alex", profile: { age: 30, gender: "male" } }
// Reference user: { user_id: 1, name: "Alex" } orders: { order_id: 10, user_id: 1, product: "Book" }
// Relationship collection user_courses: { user_id: 1, course_id: 5 }
MongoDB allows schema validation using JSON Schema to ensure data integrity.
db.createCollection("sales", { validator: { "$and": [ { "$expr": { "$lt": ["$items.discountedPrice", "$items.price"] } }, { "$jsonSchema": {"properties": {"items": {"bsonType": "array"}}}} ] } });
This ensures discountedPrice is always lower than price and validates items as an array.
db.collection.find({ $nor: [validator] });
const bookstore_reviews_default = { /* schema definition here */ }; const schema_validation = { $jsonSchema: bookstore_reviews_default }; db.runCommand({ collMod: "reviews", validator: schema_validation, validationLevel: "strict", validationAction: "error" });
This code enforces strict validation, ensuring documents match the schema exactly.